Econometrics
The Simple Regression Model

João Valle e Azevedo

Faculdade de Economia
Universidade Nova de Lisboa

Spring Semester
Objectives

Given the model

\[y = \beta_0 + \beta_1 x + u \]

- Where \(y \) is earnings and \(x \) is years of education
- Or \(y \) is sales and \(x \) is spending in advertising
- Or \(y \) is the market value of an apartment and \(x \) is its area

Our **objectives** for the moment will be:

- Estimate the unknown parameters \(\beta_0 \) and \(\beta_1 \)
- Assess how much \(x \) explains \(y \)
The Gauss-Markov Assumptions

- **Assumption SLR.1 (Linearity in Parameters)**

\[y = \beta_0 + \beta_1 x + u \]

- \(y \) is the dependent variable (or explained variable, or response variable, or the regressand)
- \(x \) is the independent variable (or explanatory variable, or control variable, or the regressor)
- \(u \) is the error term or disturbance (\(y \) is allowed to vary for the same level of \(x \))

This is a **population** equation. It is **linear in the (unknown) parameters**.
The Gauss-Markov Assumptions

• Assumption **SLR.2 (Random Sampling)** Random sample of size n, \(\{(x_i, y_i): i=1,2,...,n\} \) such that:

\[
y_i = \beta_0 + \beta_1 x_i + u_i, \ i = 1, 2, ..., n
\]

• Assumption **SLR.3 (Sample Variation in the Explanatory Variable)**
 The sample outcomes on x, namely \(\{x_i: i=1,2,...,n\} \), are not all the same value
The Gauss-Markov Assumptions

- Assumption **SLR.4 (Zero Conditional Mean)** The error u has an expected value of zero given any value of the explanatory variable

\[E(u|x) = 0 \]

Crucial Assumption!
Remember the previous examples:

\[Earnings = \beta_0 + \beta_1 Education + u \]

\[CrimeRate = \beta_0 + \beta_1 Policeman + u \]

In these cases **SLR.4** most likely fail
The Gauss-Markov Assumptions

- Assumption **SLR.4’ (Zero Mean)** The error u has an expected value of zero given any value of the explanatory variable

$$E(u) = 0$$

Not really necessary given that **SLR.4 implies SLR.4’**

- This is not a restrictive assumption since we can always use β_0 so that **SLR.4’** holds
Zero Conditional Mean

\[E(u|x) = 0 \Rightarrow E(y|x) = \beta_0 + \beta_1 x \]

Figure: For any \(x \), the distribution of \(y \) is centered about \(E(y|x) \)
Graph of $y_i = \beta_0 + \beta_1 x_i + u_i$

Figure: Population regression line, data points and the associated error terms
OLS Estimators

- Want to estimate the population parameters from a sample
- Let \(\{(x_i, y_i): i=1,2,...,n\} \) denote a random sample of size \(n \) from the population
- For each observation in this sample:
 \[
y_i = \beta_0 + \beta_1 x_i + u_i, \ i = 1, 2, ..., n
\]
- To derive the OLS estimates we need to realize that our main assumption of \(E(u|x) = E(u) = 0 \) also implies:
 \[
 Cov(x, u) = E(xu) = 0
 \]
- Remember from basic probability that \(Cov(x,y) = E(xy) - E(x)E(y) \)
OLS Estimators

- **Two Restrictions:**
 \[E(u|x) = E(u) = 0 \]
 \[\text{Cov}(x,u) = E(xu) = 0 \]

- **Since** \(u = y - \beta_0 - \beta_1 x \):
 - **Two Moment Conditions:**
 \[E(y - \beta_0 - \beta_1 x) = 0 \]
 \[E[x(y - \beta_0 - \beta_1 x)] = 0 \]
 - **Sample versions:**
 \[n^{-1} \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0 \]
 \[n^{-1} \sum_{i=1}^{n} x_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0 \]
OLS Estimators

We have two equations and two unknowns $\hat{\beta}_0$, $\hat{\beta}_1$

- Pick $\hat{\beta}_0$ and $\hat{\beta}_1$ so that the sample moments match the population moments
- From the **first sample moment condition** and given the definition of a sample mean and properties of summation:

$$n^{-1} \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$

$$\iff \bar{y} = \hat{\beta}_0 + \hat{\beta}_1 \bar{x}$$

$$\iff \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$
OLS Estimators

From the second sample moment condition:

\[n^{-1} \sum_{i=1}^{n} x_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0 \]

Plug-in \(\hat{\beta}_0 \) yields:

\[\sum_{i=1}^{n} x_i (y_i - (\bar{y} - \hat{\beta}_1 \bar{x}) - \hat{\beta}_1 x_i) = 0 \]

This simplifies to:

\[\sum_{i=1}^{n} x_i (y_i - \bar{y}) = \hat{\beta}_1 \sum_{i=1}^{n} x_i (x_i - \bar{x}) \]

Rearranging gives:

\[\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \hat{\beta}_1 \sum_{i=1}^{n} (x_i - \bar{x})^2 \]

Thus, \(\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} \)
OLS Estimators

\[\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} \]

- Need \(x \) to vary in our sample so that the slope parameter is well-defined!

\[\sum_{i=1}^{n} (x_i - \bar{x})^2 > 0 \]

- Sample covariance between \(x \) and \(y \) divided by the sample variance of \(x \)

- If \(x \) and \(y \) are positively correlated, the slope will be positive

- If \(x \) and \(y \) are negatively correlated, the slope will be negative
 - It is an estimator if we treat \((x_i, y_i)\) as random variables
 - It is an estimate once we substitute \((x_i, y_i)\) by the actual observations
Example

\[\hat{\text{wage}}_i = 245.073 + 52.513\text{educ}_i \]

\[n = 11064, \text{ Data from the Employment Survey (INE), 2003} \]

- \textit{wage} is net monthly wage and \textit{educ} measures the number of years of schooling completed

- So, we estimate a positive relation between these two variables:
 - An additional year of schooling leads to an estimated expected increase of 52.513 euros in the wage on average, ceteris paribus
 - Caution about the interpretation of these estimates!
Some Definitions

Intuitively, OLS is fitting a line through the sample points such that the SSR is as small as possible, hence the term least squares.

The residual, \(\hat{u} \), is an estimate of the error term, \(u \), and is the difference between the fitted line (sample regression function) and the sample point:

- **Fitted Value**
 \[
 \hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i
 \]

- **Residual**
 \[
 \hat{u}_i = y_i - \hat{y}_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i
 \]

- **Sum of Squared Residuals (SSR)**
 \[
 \sum_{i=1}^{n} \hat{u}_i^2 = \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2
 \]
Graph of $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$

Figure: Sample regression line, sample data points and the associated estimated error terms - the residuals
Alternative approach to derive OLS

- We want to choose our parameters such that we **minimize the SSR**:

\[
\text{SSR} = \sum_{i=1}^{n} \hat{u}_i^2 = \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2
\]

\[
\frac{\delta \text{RSS}}{\delta \hat{\beta}_0} = -2 \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0
\]

\[
\frac{\delta \text{RSS}}{\delta \hat{\beta}_1} = -2 \sum_{i=1}^{n} x_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0
\]

- These equations are equivalent to the same equations we had before: thus, same solution!
More Terminology

Think of each observation as being made up of an explained part and an unexplained part:

\[y_i = \hat{y}_i + \hat{u}_i \]

- **Total Sum of Squares (SST)**
 \[\sum_{i=1}^{n} (y_i - \bar{y})^2 \]

- **Explained Sum of Squares (SSE)**
 \[\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 \]

- **Residual Sum of Squares (SSR)**
 \[\sum_{i=1}^{n} \hat{u}_i^2 \]
$$SST = SSE + SSR$$

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \bar{y})]^2$$

$$= \sum_{i=1}^{n} [\hat{u}_i + (\hat{y}_i - \bar{y})]^2$$

$$= \sum_{i=1}^{n} \hat{u}_i^2 + 2 \sum_{i=1}^{n} \hat{u}_i(\hat{y}_i - \bar{y}) + \sum_{i=1}^{n}(\hat{y}_i - \bar{y})^2$$

$$= \sum_{i=1}^{n} \hat{u}_i^2 + \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

$$= SSR + SSE$$
Goodness of Fit

- How well does our sample regression line fit our sample data?
 - If SSR is very small relative to SST (or SSE very large relative to SST), then a lot of the variation in the dependent variable y is explained by the model.

- Can compute the fraction of the total sum of squares (SST) that is explained by the model: the \textbf{R-squared} of the regression

\[
R^2 = \frac{SSE}{SST} = 1 - \frac{SSR}{SST}
\]

\[
0 \leq R^2 \leq 1
\]

- The lower the SSR, the higher will be the \(R^2 \)
- OLS maximises the \(R^2 \) (minimises SSR)
Goodness of Fit - Example (Cont.)

\[\hat{\text{wage}}_i = 245.073 + 52.513 \text{educ}_i \]

\[n = 11064, \text{ Data from the Employment Survey (INE), 2003} \]

\[R^2 = 0.262 \]

- A lot of variation in the dependent variable (wage) is left unexplained by the model
- This is not related to the fact that educ is most probably correlated with \(u \)
- Can have low \(R^2 \) even if all the assumptions hold true
Properties of OLS Estimators

- Thought experiment:
 - Get a sample of size \(n \) from the population many times (infinite times)
 - Compute the OLS estimates
 - Is the average of these estimates equal to the true parameter values?
 - Under SLR.1 to SLR.4 it turns out that the answer is positive

\[
\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}
\]

\[
\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}
\]

- These are estimators if we treat \((x_i, y_i)\) as random variables

Theorem

Under these assumptions:

\[E(\hat{\beta}_0) = \beta_0 \text{ and } E(\hat{\beta}_1) = \beta_1 \]
Proof of Unbiasedness of OLS

\[
\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{SST_x}
\]

- where:

\[
SST = \sum_{i=1}^{n} (x_i - \bar{x})^2
\]

- Note that:

\[
\sum_{i=1}^{n} (x_i - \bar{x}) = 0 \quad \text{and} \quad \sum_{i=1}^{n} (x_i - \bar{x})x_i = \sum_{i=1}^{n} (x_i - \bar{x})^2
\]
Proof of Unbiasedness of OLS (Cont.)

- Focusing on the numerator:
 \[\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \sum_{i=1}^{n} (x_i - \bar{x})y_i \]
 \[= \sum_{i=1}^{n} (x_i - \bar{x})(\beta_0 + \beta_1 x_i + u_i) \]
 \[= \beta_1 SST_x + \sum_{i=1}^{n} (x_i - \bar{x})u_i \]

- Putting together:
 \[\hat{\beta}_1 = \frac{\beta_1 SST_x + \sum_{i=1}^{n} (x_i - \bar{x})u_i}{SST_x} \]
 \[= \beta_1 + \frac{\sum_{i=1}^{n} (x_i - \bar{x})u_i}{SST_x} \]
Proof of Unbiasedness of OLS (Cont.)

\[\hat{\beta}_1 = \beta_1 + \frac{\sum_{i=1}^{n} (x_i - \bar{x})u_i}{SST_x} \]

- Now take expectations conditional on the values of the \(x \)'s, that is, treat the \(x \)'s as constants. To avoid heavy notation that isn't done explicitly

\[E(\hat{\beta}_1) = \beta_1 + \frac{\sum_{i=1}^{n} (x_i - \bar{x})E(u_i)}{SST_x} \]

\[= \beta_1 + \frac{\sum_{i=1}^{n} (x_i - \bar{x})0}{SST_x} \]

\[= \beta_1 \]

- And if the conditional expectation is a constant, the unconditional expectation is also that constant...
Proof of Unbiasedness of OLS (Cont.)

\[\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} \]

- Now, it’s really easy to prove unbiasedness of \(\hat{\beta}_0 \). Try it yourself!

Unbiasedness Summary

- The OLS estimators of \(\beta_0 \) and \(\beta_1 \) are unbiased
- However, in a given sample we may be close or far from the true parameter, unbiasedness is a minimal requirement
- Unbiasedness depends on the 4 assumptions: if any assumption fails, then OLS is not necessarily unbiased
Variance of the OLS Estimators

- We know already that the sampling distribution of our estimators is centered around the true parameter.
- But, is the distribution **concentrated** around the true parameter?
- To answer this question, we add an additional assumption:

 - **Assumption SLR.5 (Homoskedasticity)** The error u has the same variance given any value of the explanatory variable.

 $$\text{Var}(u|x) = \sigma^2$$
Variance of the OLS Estimators

- Remember that:

\[\sigma^2 = Var(u|x) = E(u^2|x) - [E(u|x)]^2 \]

\[= E(u^2|x), \text{given that } E(u|x)=0 \]

\[= E(u^2) = \text{Var}(u) \]

- So, \(\sigma^2 \) is also the unconditional variance, called the variance of the error.
- \(\sigma \), the square root of the error variance, is called the standard deviation of the error.

- Can write:

\[E(y|x) = \beta_0 + \beta_1x \text{ and } \text{Var}(y|x) = \sigma^2 \]
Homoskedastic Case

\[E(y|x) = \beta_0 + \beta_1 x \]

Figure: How spread out is the distribution of the estimator
Heteroskedastic Case

Figure: How spread out is the distribution of the estimator
Variance of the OLS Estimators (Cont.)

\[\hat{\beta}_1 = \beta_1 + \frac{\sum_{i=1}^{n} (x_i - \bar{x}) u_i}{SST_x}, \text{where } SST_x = \sum_{i=1}^{n} (x_i - \bar{x})^2 \]

\[\text{Var}(\hat{\beta}_1) = \text{Var} \left(\beta_1 + \frac{1}{SST_x} \sum_{i=1}^{n} (x_i - \bar{x}) u_i \right) \]

\[= \left(\frac{1}{SST_x} \right)^2 \text{Var} \left(\sum_{i=1}^{n} (x_i - \bar{x}) u_i \right) \]

\[= \left(\frac{1}{SST_x} \right)^2 \sum_{i=1}^{n} (x_i - \bar{x})^2 \text{Var}(u_i) \]

\[= \left(\frac{1}{SST_x} \right)^2 \sum_{i=1}^{n} (x_i - \bar{x})^2 \sigma^2 = \sigma^2 \left(\frac{1}{SST_x} \right)^2 SST_x \]
Variance of the OLS Estimators (Cont.)

\[Var(\hat{\beta}_1) = \frac{\sigma^2}{SST_x}, \text{where } SST_x = \sum_{i=1}^{n} (x_i - \bar{x})^2 \]

- The larger the error variance, \(\sigma^2 \), the larger the variance of the slope estimator
- The larger the variability in the \(x_i \), the smaller the variance of the slope estimate
- \(SST_x \) tends to increase with the sample size \(n \), so variance tends to decrease with the sample size

Can also show:

\[Var(\hat{\beta}_0) = \frac{n^{-1} \sigma^2 \sum_{i=1}^{n} x_i^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2} \]
Variance of the OLS

Theorem

Under Assumptions **SLR.1 through SLR.5**

\[
\text{Var}(\hat{\beta}_1) = \frac{\sigma^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}
\]

\[
\text{Var}(\hat{\beta}_0) = \frac{n^{-1} \sigma^2 \sum_{i=1}^{n} x_i^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}
\]

conditional on the sample values \(\{x_1, x_2, \ldots \} \)
Estimating the Error Variance

- In practice, the error variance σ^2 is unknown since we don’t observe the errors, we must estimate it...

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{n} \hat{u}_i^2}{n-2} = \frac{SSR}{n-2}$$

- Can be show that this is an unbiased estimator of the error variance.

- The so-called standard error of the regression (SER) is given by:

$$\hat{\sigma} = \sqrt{\hat{\sigma}^2}$$

- Recall that:

$$se(\hat{\beta}_1) = \frac{\hat{\sigma}}{\left[\sum_{i=1}^{n}(x_i - \bar{x})^2\right]^{1/2}}, \text{and similarly for } \hat{\beta}_0$$
Example (Cont.)

\[\hat{\text{wage}}_i = 245.073 + 52.513\text{educ}_i \]

\(n = 11064 \), Data from the Employment Survey (INE), 2003

\[R^2 = 0.262 \]

\[\hat{\sigma}^2 = 155366 \text{ and } \hat{\sigma} = 394.164 \]

\[\text{se}(\hat{\beta}_0) = 7.575 \text{ and } \text{se}(\hat{\beta}_1) = 0.837 \]