Um cheirinho de Primitivas e Integrais, para se tornarem economistas ou gestores.

Maria Helena Almeida
Claudia Andrade
Guilherme Pereira
Ernesto Freitas
Claudia Alves
1 Primitivação

1.1 Exercícios resolvidos

1. Calcule as seguintes primitivas imediatas ou quase imediatas:

(a) \(\int 5 \)

 Resolução:
 \[
 \int 5 = 5 \int 1 = 5x + C
 \]

(b) \(\int 7x^2 \)

 Resolução:
 \[
 \int 7x^2 = 7 \int x^2 = \frac{7}{3}x^3 + C
 \]

(c) \(\int (x - 4)^9 \)

 Resolução:
 \[
 \int (x - 4)^9 = \frac{1}{10} (x - 4)^{10} + C; \text{ não caia na tentação de desenvolver } (x - 4)^9 \text{ pelo binómio de Newton, a menos que queira ganhar prática deste...}
 \]

(d) \(\int (2x + 5)^3 \)

 Resolução:
 \[
 \int (2x + 5)^3 = \frac{1}{4} (2x + 5)^4 + C = \frac{1}{8} (2x + 5)^4 + C ; \text{ mesmo comentário que em b)}
 \]

(e) \(\int \sqrt{x} \)

 Resolução:
 \[
 \int \sqrt{x} = \int x^{\frac{1}{2}} = \frac{2}{3}x^{\frac{3}{2}} + C
 \]

(f) \(\int \sqrt[3]{x} \)

 Resolução:
 \[
 \int \sqrt[3]{x} = \int x^{\frac{1}{3}} = \frac{3}{4}x^{\frac{4}{3}} + C
 \]

(g) \(\int \sqrt{1-x} \)

 Resolução:
 \[
 \int \sqrt{1-x} = \int (1-x)^{\frac{1}{2}} = -\frac{(1-x)^{\frac{3}{2}}}{\frac{3}{2}+1} = -\frac{1}{9}(1-x)^{\frac{3}{2}} + C
 \]

(h) \(\int x^{-\frac{2}{3}} \)

 Resolução:
 \[
 \int x^{-\frac{2}{3}} = \frac{5}{3}x^{\frac{5}{3}} + C
 \]
(i) \(\int \frac{2}{x^2} \)

\[\text{Resolução:} \]
\[\int \frac{2}{x^2} = 2 \int \frac{1}{x^2} = 2 \int x^{-2} = 2 \frac{x^{-2+1}}{-2+1} = 2 (-x^{-1}) + C = -\frac{2}{x} + C \]

(j) \(\int e^x \)

\[\text{Resolução:} \]
\[\int e^x = e^x + C \]

(k) \(\int e^{kx} \) para \(k \neq 0 \)

\[\text{Resolução:} \]
\[\int e^{kx} = \frac{1}{k} e^{kx} + C \]

(l) \(\int 2e^{3x} \)

\[\text{Resolução:} \]
\[\int 2e^{3x} = 2 \int e^{3x} = 2 \frac{1}{3} \int 3e^{3x} = 2 \frac{3}{3} e^{3x} = 2 e^{3x} + C \]

(m) \(\int e^{\frac{1}{x}} \) para \(k \neq 0 \)

\[\text{Resolução:} \]
\[\int e^{\frac{1}{x}} = xe^{\frac{1}{x}} + C \]

(n) \(\int 30^x \)

\[\text{Resolução:} \]
\[\int 30^x = \frac{30^x}{\ln 30} + C; \text{ relembrar} \ \left(\frac{30^x}{\ln 30}\right)' = \frac{1}{\ln 30} 30^x \ln 30 \]

(o) \(\int a^{2x} \)

\[\text{Resolução:} \]
\[\int a^{2x} = \int \frac{1}{2} a^{2x} = \frac{1}{2} \int a^{2x} = \frac{1}{2} a^{2x} + C \]

(p) \(\int \frac{1}{x} \)

\[\text{Resolução:} \]
\[\int \frac{1}{x} = \ln |x| + C; \text{ relembrar, } \ln |x| \text{ é uma função de domínio } R \setminus \{0\} \text{ e } (\ln |x|)' = \frac{1}{x} \]

(q) \(\int \frac{1}{x+3} \)

\[\text{Resolução:} \]
\[\int \frac{1}{x+3} = \ln |x+3| + C \]
(r) \(\int \frac{2x}{x^2+1} \)

Resolução:
\[\int \frac{2x}{x^2+1} = \ln|x^2 + 1| + C; \text{ neste caso também podia ser } \ln(x^2 + 1) \ldots \text{porque?} \]

(s) \(\int \frac{1}{x \ln x} \)

Resolução:
\[\int \frac{1}{x \ln x} = \int \frac{1}{\ln x} = \ln|\ln x| + C \]

(t) \(\int \cos(5x) \)

Resolução:
\[\int \cos(5x) = \frac{1}{5} \sin(5x) + C \]
Atenção!! Erro comum: dizer que \(\int \cos(5x) = \sin(5x) + C \) !! Derive e veja!

(u) \(\int \sin \left(\frac{x}{7} \right) \)

Resolução:
\[\int \sin \left(\frac{x}{7} \right) = -\cos \left(\frac{x}{7} \right) = -7 \cos \left(\frac{1}{7} x \right) + C \]

(v) \(\int \sin(3 - 4x) \)

Resolução:
\[\int \sin(3 - 4x) = \frac{1}{4} \cos(3 - 4x) + C; \text{ relembrar } (\cos f(x))' = (-\sin f(x)) f'(x) \]

(w) \(\int e^x \sin(e^x) \)

Resolução:
\[\int e^x \sin(e^x) = -e^x + C \]

(x) \(\int \frac{2x}{\sqrt{1-x^2}} \)

Resolução:
\[\int \frac{2x}{\sqrt{1-x^2}} = \int \frac{(\frac{1}{2})'}{\sqrt{1-(\frac{1}{2}x)^2}} = \arcsin(x^2) + C \]

(y) \(\int \frac{8x^2}{1+4x^2} \)

Resolução:
\[\int \frac{8x^2}{1+4x^2} = 8 \int \frac{x^2}{1+4(x^2)^2} = 8 \int \frac{x^2}{1+(2x^2)^2} = 8 \int \frac{6x^2}{1+(2x^3)^2} = \frac{4}{3} \arctan(2x^3) + C; \text{ derive para se convencer...} \]

(z) \(\int \frac{3}{x \sqrt{1-\ln^2(x)}} \)

Resolução:
\[\int \frac{3}{x \sqrt{1-\ln^2(x)}} = 3 \int \frac{1}{\sqrt{1-\ln^2(x)}} = 3 \arcsin(\ln x) + C \]
2. Primitivas as seguintes funções decompondo as expressões noutras mais simples.

(a) \(f(x) = 4x^2 + 3x - 2 \)

\[\text{Resolução: } \int 4x^2 + 3x - 2 = \int 4x^2 + \int 3x + \int -2 = 4 \int x^2 + 3 \int x - 2 \int 1 = 4 \frac{x^3}{3} + 3 \frac{x^2}{2} - 2x + C = \]
\[= \frac{4}{3} x^3 + \frac{3}{2} x^2 - 2x + C \]

(b) \(f(x) = (2 - x)\sqrt{x} \)

\[\text{Resolução: A aplicando a propriedade distributiva a } (2 - x)\sqrt{x}, \text{chega-se a} \]
\[\int (2 - x)\sqrt{x} = \int (2x^{\frac{3}{2}} - x^\frac{5}{2}) = 2 \int x^{\frac{3}{2}} - \int x^\frac{5}{2} = \frac{4}{3} x^{\frac{5}{2}} - \frac{2}{5} x^{\frac{7}{2}} + C \]

(c) \(f(x) = \frac{3x + 9}{1+x^2} \)

\[\text{Resolução:} \]
\[\int \frac{3x + 9}{1+x^2} = \int \frac{3x}{1+x^2} + \int \frac{9}{1+x^2} = 3 \int \frac{x}{1+x^2} + 9 \int \frac{1}{1+x^2} = \frac{3}{2} \int \frac{2x}{1+x^2} + 9 \int \frac{1}{1+x^2} = \frac{3}{2} \ln |1 + x^2| + 9 \arctan(x) + C \]

(d) \(f(x) = \frac{e^{x^2} + 5e^{2x}}{1+e^{2x}} \)

\[\text{Resolução:} \]
\[\int \frac{e^{x^2} + 5e^{2x}}{1+e^{2x}} = \int \frac{e^{x^2}}{1+e^{2x}} + \int \frac{5e^{2x}}{1+e^{2x}} = \int \frac{e^{x^2}}{1+(e^x)^2} + 5 \int \frac{e^{2x}}{1+e^{2x}} = \arctan(e^x) + \frac{5}{2} \int \frac{2e^{2x}}{1+e^{2x}} = \]
\[\arctan(e^x) + \frac{5}{2} \ln |1 + e^{2x}| + C \]

3. Utilizando o método de \textbf{primitivação por partes} calcule uma primitiva das seguintes funções:

\textit{Relembre:} A primitivação segundo este método, baseia-se na fórmula
\[P(uv) = uv - P(uv) \]

Acredite que a única dificuldade está em perceber qual a função \(v \) que devemos escolher para derivar e qual a função \(u' \) que devemos escolher para primitivar! De resto é muito simples...se resultar!!

(a) \(f(x) = x^2 e^x \)

\[\text{Resolução:} \]
Sendo \(v = x^2 \) e \(u' = e^x \), temos que \(v' = 2x \) e \(u = e^x \), donde \(\int x^2 e^x = e^x x^2 - \int e^x 2x = e^x x^2 - 2 \int xe^x \)

Prece temos de primitivar novamente por partes, por isso para tornar a resolução mais clara vamos mudar de notação pois as funções com que vamos trabalhar não são as mesmas.

Vamos admitir agora que \(P(fg) = fg - P(fg) \)

Sendo \(f = x \) e \(g = e^x \), temos que \(f' = 1 \) e \(g' = e^x \), logo, retomando:\n\[e^x x^2 - 2 \int xe^x = e^x x^2 - 2 \frac{xe^x - \int e^x}{e^x} + C = e^x x^2 - 2xe^x + 2e^x + C \]

Então, \(\int x^2 e^x = e^x x^2 - 2xe^x + 2e^x + C \)
(b) $f(x) = e^x \sin x$

Resolução:

Sendo $v = \sin x$ e $u' = e^x$, temos que $v' = \cos x$ e $u = e^x$: $\int (e^x \sin x) = e^x \sin x - \int (e^x \cos x)$

Voltando a primitivar por partes e admitindo que $f = \cos x$ e $g = e^x$, então $f' = -\sin x$ e $g = e^x$, logo:

$$e^x \sin x - \int (e^x \cos x) = e^x \sin x - \left[e^x \cos x - \int e^x (-\sin x) \right] = e^x \sin x - e^x \cos x - \int (e^x \sin x)$$

Como $\int (e^x \sin x) = e^x \sin x - e^x \cos x - \int (e^x \sin x)$, então

$$2 \int (e^x \sin x) = e^x \sin x - e^x \cos x + C \iff \int (e^x \sin x) = \frac{e^x \sin x - e^x \cos x}{2} + C$$

(c) $f(x) = \sin^2 x$

Resolução:

Sendo $v = \sin x$ e $u' = \sin x$, temos que $v' = \cos x$ e $u = -\cos x$:

$$\int \sin^2 x = \int \sin x \sin x = -\cos x \sin x - \int -\cos x \cos x = -\cos x \sin x + \int \cos^2 x = -\cos x \sin x + \int 1 - \sin^2 x = -\cos x \sin x + x - \int \sin^2 x$$

Assim, retomando a expressão original:

$$\int \sin^2 x = -\cos x \sin x + x - \int \sin^2 x \iff \int \sin^2 x = \frac{x - \sin x \cos x}{2} + C$$

(d) $\int f(x) = \cos^3 x$

Resolução:

Sendo $v = \cos^3 x$ e $u' = \cos x$, temos que $v' = 3 \cos^2 x(-\sin x)$ e $u = \sin x$:

$$\int \cos^3 x = \int \cos x \cdot \cos^2 x = \sin x \cos^3 x - \int \sin x (3 \cos^2 x (-\sin x)) =$$

$$= \sin x \cos^3 x + 3 \int \sin^2 x \cos^2 x = \sin x \cos^3 x + 3 \int (1 - \cos^2 x) \cos^2 x =$$

$$= \sin x \cos^3 x + 3 \int \cos^2 x - 3 \int \cos^4 x$$

Como $\int \cos^4 x = \sin x \cos^3 x + 3 \int \cos^2 x - 3 \int \cos^4 x$, então: $\int \cos^4 x = \frac{\sin x \cos^3 x}{4} + \frac{3 \int \cos^2 x}{4}$

Vamos agora resolver a última primitiva, ou seja $\int \cos^2 x$, novamente por partes.

Sendo $v = \cos x$ e $u' = \cos x$, temos que $v' = -\sin x$ e $u = \sin x$:

$$\int \cos^2 x = \int \cos x \cdot \cos x = \sin x \cos x + \int \sin^2 x = \sin x \cos x + \int (1 - \cos^2 x) =$$

$$= \sin x \cos x + x - \int \cos^2 x$$

Assim, $\int \cos^2 x = \sin x \cos x + x - \int \cos^2 x \iff \int \cos^2 x = \frac{\sin x \cos x + x}{2} + C$

Retomando a expressão original,

$$\int \cos^4 x = \frac{\sin x \cos^3 x}{4} + \frac{3 \int \cos^2 x}{4} = \frac{\sin x \cos^3 x}{4} + \frac{3}{4} \left[\frac{\sin x \cos x + x}{2} \right] = \frac{\sin x \cos^3 x}{4} + \frac{3}{8} \sin x \cos x + \frac{3}{8} x + C$$
(e) \(f(x) = x \ln x \)

Resolução:

Sendo \(v = \ln x \) e \(u = x \), temos que \(v' = \frac{1}{x} \) e \(u = x^2 \) :
\[
\int x \ln x = \frac{x^2}{2} \ln x - \int \frac{x^2}{2} \frac{1}{x} = \frac{x^2}{2} \ln x - \int \frac{x}{2} = \frac{x^2}{2} \ln x - \frac{1}{2} \int x = \frac{x^2}{2} \ln x - \frac{1}{2} x^2 = \frac{x^2}{2} \ln x - \frac{x^2}{4} + C
\]

(f) \(f(x) = \ln^2 x \)

Resolução:

Sendo \(v = \ln^2 x \) e \(u = 1 \), temos que \(v' = 2(\ln x) \frac{1}{x} \) e \(u = x \) :
\[
\int 1 \ln^2(x) = x \ln^2(x) - \int x (2 \ln x) \frac{1}{2} = x \ln^2(x) - 2 \int \ln x
\]

Temos que voltar a primitivar por partes para calcular \(\int \ln x! \)

Sendo \(f = \ln x \) e \(g' = 1 \), temos que \(f' = \frac{1}{x} \) e \(g = x \) :
\[
\int 1 \ln(x) = x \ln x - \int x \frac{1}{x} = x \ln x - x + C
\]

Assim, \(\int 1 \ln^2(x) = x \ln^2(x) - 2 \int \ln x = x \ln^2(x) - 2 (x \ln x - x) \)

(g) \(f(x) = e^{2x} x^3 \)

Resolução:

Sendo \(v = x^3 \) e \(u' = e^{2x} \), temos que \(v' = 3x^2 \) e \(u = \frac{1}{2} e^{2x} \) :
\[
\int e^{2x} x^3 = \frac{1}{2} e^{2x} x^3 - \frac{1}{2} e^{2x} 3x^2 = \frac{1}{2} e^{2x} x^3 - \frac{3}{2} \int e^{2x} x^2
\]

Temos que voltar a repetir o processo para calcular a primitiva resultante!

Sendo agora \(f = x^2 \) e \(g = e^{2x} \), temos que \(f' = 2x \) e \(g = \frac{1}{2} e^{2x} \) :
\[
\int e^{2x} x^2 = \frac{1}{2} e^{2x} x^2 - \frac{1}{2} e^{2x} 4x = \frac{1}{2} e^{2x} x^2 - \int e^{2x} x
\]

Mais uma vez...

Sendo \(v = x \) e \(u' = e^{2x} \) :
\[
\int e^{2x} x = \frac{1}{2} e^{2x} x - \frac{1}{2} e^{2x} 2x = \frac{1}{2} e^{2x} x - \frac{1}{2} e^{2x} x - \frac{1}{4} e^{2x}
\]

Voltando ao início,
\[
\int e^{2x} x^3 = \frac{1}{2} e^{2x} x^3 - \frac{3}{2} \int e^{2x} x^2 = \frac{1}{2} e^{2x} x^3 - \frac{3}{2} \left[\frac{1}{2} e^{2x} x^2 - \int e^{2x} x \right] = \frac{1}{2} e^{2x} x^3 - \frac{3}{4} e^{2x} x^2 - \frac{3}{2} \left[\frac{1}{2} e^{2x} x - \frac{1}{4} e^{2x} \right] =
\]

= \(\frac{1}{4} e^{2x} x^3 - \frac{3}{4} e^{2x} x^2 + \frac{3}{4} e^{2x} x - \frac{3}{8} e^{2x} \)

(h) \(m(x) = xe^x \)

Resolução:

Neste caso parece lógico escolher \(f = x \) (é mais fácil derivar do que primitivar) e \(g' = e^x \) (é de fácil primitivação). Experimente fazer ao contrário e sinta a dificuldade encontrada!

Retomando, sendo \(f = x \), então \(f' = 1 \) e sendo \(g' = e^x \), então \(g = e^x \).

Logo, \(\int xe^x = xe^x - \int e^x = xe^x - e^x + C \)
(i) $h(x) = \ln \left(x^2 + 1 \right)$

Resolução:

Sendo $f = \ln \left(x^2 + 1 \right)$ e $g = x$,

\[
\int \ln \left(x^2 + 1 \right) = \ln \left(x^2 + 1 \right) - \int \frac{2x}{x^2 + 1} = \ln \left(x^2 + 1 \right) - \int 2 \frac{2x}{x^2 + 1} = \ln \left(x^2 + 1 \right) - 2 \frac{2}{x^2 + 1} = \]

\[
x \ln \left(x^2 + 1 \right) - 2x + 2 \int \frac{1}{x^2 + 1} = x \ln \left(x^2 + 1 \right) - 2x + 2 \arctan(x) + C
\]

4. Recorrendo ao método de primitivação por substituição calcule uma primitiva das seguintes funções.

DICA: Este método de primitivação pode ser muito útil quando a expressão que queremos primitivar é antipática! Substituindo a variável x nessa expressão por uma expressão noutra variável, por exemplo t, podemos ter o trabalho muito simplificado. A técnica está em escolher a expressão $x = \varphi(t)$ que facilite e não que dificulte! Nem sempre é fácil!

Segundo este método de primitivação, sendo $x = \varphi(t)$, então $\int f(x) = \left(\int f(\varphi(t)) \right) \varphi(t)$.

Vejamos alguns exemplos:

(a) $h(x) = e^{8x}$

Resolução:

Por substituição: $x = \ln(t) \Leftrightarrow t = e^x$ e $x' = \frac{1}{t}$

\[
\int e^{8x} \longrightarrow \int e^{8 \ln(t)} \frac{1}{t} = \int \left(e^{\ln(t)} \right)^8 \frac{1}{t} = \int t^8 \frac{1}{t} = \int t^7 = \frac{t^8}{8}
\]

Voltando a substituir, $\frac{t^8}{8} \longrightarrow \frac{e^{8x}}{8}$, logo

\[
\int e^{8x} = \frac{e^{8x}}{8} + C; \text{ note que esta primitiva é imediata mas é sempre bom observar alternativas!!}
\]

(b) $m(x) = \frac{x^2 + 3}{\sqrt{9 - x^2}}$

Resolução:

Por substituição: $x = 3 \sin(t) \Leftrightarrow t = \arcsin \left(\frac{x}{3} \right)$ e $x' = 3 \cos(t)$

\[
\int \frac{x^2 + 3}{\sqrt{9 - x^2}} \longrightarrow \int \frac{9 \sin^2(t) + 3}{\sqrt{9 - 9 \sin^2(t)}} = \int \frac{9 \sin^2(t) + 3}{3 \sqrt{1 - \sin^2(t)}} = \int \frac{9 \sin^2(t) + 3}{3 \cos(t)} =
\]

\[
= 3 \int \left(\sin^2(t) + 1 \right) = 9 \int \sin^2(t) + 3 \int 1 = 9 \int \sin^2(t) + 3t = 9 \left(\frac{t}{2} - \frac{\sin(2t)}{4} \right) + 3t =
\]

\[
= 9 \left(\frac{t}{2} - \frac{2 \sin(t) \cos(t)}{4} \right) + 3t = 9 \left(\frac{t}{2} - \frac{\sin(t) \cos(t)}{2} \right) + 3t = \frac{9}{2} \left(t - \sin(t) \cos(t) \right) + 3t =
\]

\[
= \frac{9}{2} \sin(t) \cos(t) + 3t + \frac{9}{2} t = -\frac{9}{2} \sin(t) \cos(t) + \frac{15}{2} t
\]

Para que este acabado mas está em t. Ora a função inicial é em x. Voltando a substituir,

$t = \arcsin \left(\frac{x}{3} \right) \Leftrightarrow \sin(t) = \frac{x}{3}$

Sabendo que $\sin^2(t) + \cos^2(t) = 1$ e que $\sin(t) = \frac{x}{3}$,

\[
\left(\frac{x}{3} \right)^2 + \cos^2(t) = 1 \Leftrightarrow \frac{x^2}{9} + \cos^2(t) = 1 \Leftrightarrow \cos(t) = \sqrt{1 - \frac{x^2}{9}}
\]

\[
\int \frac{x^2 + 3}{\sqrt{9 - x^2}} = -\frac{9}{2} \sin(t) \cos(t) + \frac{15}{2} t \longrightarrow \int \frac{x^2 + 3}{\sqrt{9 - x^2}} = -\frac{9}{2} \sqrt{9 - \frac{x^2}{9}} + \frac{15}{2} \arcsin \left(\frac{x}{3} \right) =
\]

\[
= -\frac{3}{2} x \sqrt{9 - \frac{x^2}{9}} + \frac{15}{2} \arcsin \left(\frac{x}{3} \right) = -\frac{5}{2} \sqrt{9 - x^2} + \frac{15}{2} \arcsin \left(\frac{x}{3} \right)
\]
Assim,
\[\int \frac{x^2+3}{\sqrt{9-x^2}} = -\frac{x}{2} \sqrt{9-x^2} + \frac{15}{2} \arcsin \left(\frac{x}{3} \right) + C \]

(c) \(g(x) = \frac{\ln^3 x}{x(\ln^3 x + 1)} \)

Resolução:
Por substituição: \(t = \ln x \iff x = e^t \)
\[\int \frac{\ln^3 x}{x(\ln^3 x + 1)} \, dt = \int \frac{t^3}{(t^3 + 1)} \, dt \]
Fazendo a divisão dos dois polinômios, vem que:
\[\int \frac{t^4}{(t^3 + 1)} = \int \left(t^2 - 1 + \frac{1}{t^2+1} \right) \, dt = \int t^2 \, dt - \int 1 \, dt + \int \frac{1}{t^2+1} \, dt = \frac{t^3}{3} - t + \arctg(t) + C \]
Mas \(t = \ln x \), logo \(\int \frac{t^4}{(t^3 + 1)} = \frac{t^3}{3} - t + \arctg(t) + C = \frac{\ln^3 x}{3} - \ln x + \arctg(\ln x) + C \)

(d) \(j(x) = \frac{\sin \sqrt{\frac{x}{3}}}{\sqrt{\frac{x}{3}}} \)

Resolução:
Por substituição: \(t = \sqrt{x} \iff x = t^2 \) e \(x' = 2t \)
\[\int \frac{\sin \sqrt{\frac{x}{3}}}{\sqrt{\frac{x}{3}}} \, dt = \int \frac{\sin t}{t} \, dt = 2 \int \sin(t) = -2 \cos(t) \]
Voltando a substituir: \(\int \frac{\sin \sqrt{\frac{x}{3}}}{\sqrt{\frac{x}{3}}} = -2 \cos(\sqrt{x}) + C \)

(e) \(c(x) = 3^{\sqrt{2x+1}} \)

Resolução:
Por substituição: \(t = \sqrt{2x+1} \iff x = \frac{t^2-1}{2} \) e \(x' = t \)
\[\int 3^{\sqrt{2x+1}} \, dt = \int 3^t \, dt \]
Primitivando por partes, em que \(v = t \) e \(u' = 3^t \), e, por conseguinte, \(v' = 1 \) e \(u = \frac{3^t}{\ln(3)} \):
\[\int 3^t = \frac{3^t}{\ln(3)} t - \int \frac{3^t}{\ln(3)} \, dt = \frac{3^t}{\ln(3)} t - \frac{1}{\ln(3)} \int 3^t = \frac{3^t}{\ln(3)} t - \frac{3^t}{\ln(3)^2} + C ; \text{ parece que está feito mas não está...} \]
Tornando a substituir: \(\frac{3^t}{\ln(3)} t - \frac{3^t}{\ln(3)^2} \rightarrow \frac{3^{\sqrt{2x+1}}}{\ln(3)} \sqrt{2x+1} - \frac{3^{\sqrt{2x+1}}}{\ln(3)^2} + C \)

5. Primitivas das seguintes frações racionais:

(a) \(\frac{8x^2+x+1}{x^3-x} \)

Resolução:
Esta fração racional já é própria (sorte!) por isso só temos de encontrar as raízes do denominador e decompor-la em elementos simples.

Então, \(\int \frac{8x^2+x+1}{x^3-x} = \int \frac{8x^2+x+1}{x(x^2-1)} = \int \frac{8x^2+x+1}{x(x-1)(x+1)} \)
Usando o Método dos Coeficientes Indeterminados podemos encontrar os valores de \(A_1 \), \(A_2 \) e \(A_3 \) tais que: \(\int \frac{8x^2+x+1}{x(x-1)(x+1)} = \int \frac{A_1}{x} + \frac{A_2}{x-1} + \frac{A_3}{x+1} \)
\[
\frac{A_1}{x} + \frac{A_2}{x-1} + \frac{A_3}{x+1} = \frac{A_1(x-1)(x+1) + A_2(x+1) + A_3(x-1)}{x(x^2-1)} = \frac{8x^2+x+1}{x(x-1)(x+1)}
\]

Assim,
\[
8x^2 + x + 1 = A_1(x-1)(x+1) + A_2x(x+1) + A_3x(x-1) \iff \\
\iff 8x^2 + x + 1 = A_1x^2 - A_1 + A_2x^2 + A_2x + A_3x^2 - A_3x \iff \\
\iff 8x^2 + x + 1 = (A_1 + A_2 + A_3)x^2 + (A_2 - A_3)x - A_1
\]

A solução desta igualdade é dada por um sistema de equações
\[
A_1 + A_2 + A_3 = 8 \\
A_2 - A_3 = 1 \\
-A_1 = 1
\]

A solução é \(A_1 = -1; \ A_2 = 5; \ A_3 = 4. \)

Agora é fácil!
\[
\int \frac{8x^2+x+1}{x^2-2x+10} = \int \frac{\frac{1}{2} + \frac{5}{x-1} + \frac{4}{x+1}}{x} = -\int \frac{1}{2} + 5 \int \frac{1}{x-1} + 4 \int \frac{1}{x+1} = \\
= -\ln |x| + 5 \ln |x-1| + 4 \ln |x+1| = -\ln |x| + \ln |x-1|^5 + \ln |x+1|^4 = \\
= \ln \left| \frac{x-1}{x+1} \right|^4 + C
\]

(b) \(\frac{x^3+1}{x^2-2x+10} \)

Resolução:

Não sendo uma fração racional própria, o primeiro passo é torná-la própria procedendo à divisão inteira dos dois polinómios.

Esta operação efectua-se da seguinte maneira:

\[
\begin{array}{c|ccc}
 & x^3 & + & 1 \\
+ & -x^3 & + & 2x^2 & - & 10x \\
\hline
0 & 0 & + & 2x^2 & - & 10x & + & 1 \\
+ & - & 2x & + & 4x & - & 20 \\
\hline
0 & 0 & - & 6x & - & 19
\end{array}
\]

\[
\int \frac{x^3+1}{x^2-2x+10} = \int \left(x + 2 - \frac{6x+19}{x^2-2x+10} \right) = \frac{x^2}{2} + 2x - \int \frac{6x+19}{x^2-2x+10}
\]

Neste caso, a primitiva que resulta é simples, não sendo necessário proceder à decomposição do polinómio do denominador.

\[
\int \frac{6x+19}{x^2-2x+10} = \int \frac{3(2x-2)+25}{x^2-2x+10} = 3 \int \frac{2x-2}{x^2-2x+10} + 25 \int \frac{1}{x^2-2x+10} = 3 \int \frac{2x-2}{x^2-2x+10} + 25 \int \frac{1}{(x-1)^2+9} = \\
= 3 \ln |x^2 - 2x + 10| + 25 \int \frac{1}{(x-1)^2+9}
\]

9
Calculando a primitiva da última parte em separado:

\[
\int \frac{3}{(z-1)^2} = \int \frac{1}{(\frac{z-1}{3})^2 + 1} = \frac{1}{3} \int \frac{\frac{3}{z-1}}{\left(\frac{z-1}{3}\right)^2 + 1} = \frac{1}{3} \arctg \left(\frac{z-1}{3}\right)
\]

Substituindo:

\[
\int \frac{x^3+1}{x^2-2x+10} = \int \frac{x^2}{2} + 2x - \left[3 \ln |x^2 - 2x + 10| + 25 \int \frac{1}{(x-1)^2} + 9\right] = \\
= \frac{x^2}{2} + 2x - 3 \ln |x^2 - 2x + 10| - \frac{25}{3} \arctg \left(\frac{x-1}{3}\right) + C
\]

(c) \[\frac{x+1}{2x^2-5x+2}\]

Resolução:

Trata-se já de uma fração racional própria, logo vamos decompor o polinómio do denominador.

\[
\frac{x+1}{2x^2-5x+2} = \frac{x+1}{2(x-2)(x-\frac{1}{2})}
\]

Pelo Método dos Coeficientes Indeterminados:

\[
\frac{x+1}{2x^2-5x+2} = \frac{A}{x-2} + \frac{B}{x-\frac{1}{2}}
\]

Assim, \(x+1 = A(x-\frac{1}{2}) + B(x-2)\), resultando \(1 = A + B e 1 = -\frac{3}{2} - 2B \Leftrightarrow A = 2 e B = -1\).

Concluindo:

\[
\int \frac{x+1}{2x^2-5x+2} = \int \frac{1}{2} \left(\frac{2}{x-2} + \frac{1}{x-\frac{1}{2}}\right) = \frac{1}{2} \left[2 \int \frac{1}{x-2} - \int \frac{1}{x-\frac{1}{2}}\right] = \\
= \ln |x-2| - \frac{1}{2} \ln |x-\frac{1}{2}| + C
\]
1.2 Exercícios propostos

1. Calcule as seguintes primitivas imediatas ou quase imediatas:

(a) $\int e^{2x}$
(b) $\int \frac{1}{2x+3}$
(c) $\int \frac{x}{x^2+1}$
(d) $\int (ax + b)^m$
(e) $\int \sin(7x)$
(f) $\int \tan(2x)$
Sug: $\tan(2x) = \frac{\sin(2x)}{\cos(2x)}$
(g) $\int x^2 \sin(x^3)$
(h) $\int \frac{e^x}{e^x+9}$
(i) $\int \frac{4}{x^2+1}$
(j) $\int \frac{4}{\sqrt{x}}$
(k) $\int \frac{9e^{\sqrt{x}}}{\sqrt{x}}$
(l) $\int \frac{1}{x^2+6x+10}$
(m) $\int \frac{1}{x^2+6x+12}$

2. Primitivas as seguintes funções por decomposição das expressões noutras mais simples:

(a) $\int 3x^2 - 20x - 5$
(b) $\int e^{3x} - 5e^{2x} + 4e^x$
(c) $\int (x - 1)(x + 4)$
(d) $\int (\frac{1-x}{x})^2$
(e) $\int \frac{\sin(x)+\cos(x)}{\sin(x)}$
(f) $\int \frac{2x+1}{x^2+1}$
(g) $\int x^2(x - 2)^3$
(h) $\int \frac{x}{x^2+4x+7}$
(i) $\int \frac{x^3-3x+4}{x}$
3. Calcule o valor das primitivas das seguintes funções através do método de primitivação por partes:

(a) \(a(x) = \ln(x) \)
(b) \(b(x) = x \sin(x) \)
(c) \(c(x) = \ln(1 - x) \)
(d) \(d(x) = x \sqrt{x + 1} \)
(e) \(e(x) = \frac{1}{x} \ln(x) \)

4. Utilizando o método de primitivação por substituição, determine as seguintes primitivas:

(a) \(\int \frac{x + 1}{\sqrt{x}} \) \hspace{1cm} (Dica: faç a \(x = t^2 \))
(b) \(\int \frac{\ln(x)}{x} \) \hspace{1cm} (Dica: faç a \(x = e^t \))
(c) \(\int \frac{\sqrt{x + 1}}{\sqrt{x+1} + 3} \) \hspace{1cm} (Dica: faç a \(x + 1 = t^6 \))
(d) \(\int \frac{\sqrt{x}}{\sqrt{x} + 1} \) \hspace{1cm} (Dica: faç a \(x = t^4 \))
(e) \(\int e^{\sqrt{x}} \) \hspace{1cm} (Dica: faç a \(x = t^2 \))
(f) \(\int \sin(\sqrt{x}) \) \hspace{1cm} (Dica: faç a \(x = t^3 \))

5. Calcule as seguintes primitivas de frações racionais. Não esqueça que o primeiro passo é obter uma fração própria caso não a tenha já.

(a) \(\int \frac{x^2 - 3x + 1}{x^2 + 2x + 1} \)
(b) \(\int 3x^3 \)
(c) \(\int \frac{x^3}{x+1} \)
(d) \(\int \frac{2x-1}{(x-1)(x-2)} \)
(e) \(\int \frac{4x}{x^2-6x+6} \)
1.3 Soluções

1. (a) \(\frac{1}{2} e^{2x} + C \)
 (b) \(\frac{1}{2} \ln|2x + 3| + C \)
 (c) \(\frac{1}{2} \ln(x^2 + 1) + C \)
 (d) \(\frac{1}{a(m+1)} (ax + b)^{m+1} + C \quad a \neq 0 \text{ e } m \neq -1 \)
 (e) \(-\frac{1}{7} \cos(7x) + C \)
 (f) \(-\frac{1}{2} \ln|\cos(2x)| + C \)
 (g) \(-\frac{1}{3} \cos(x^3) + C \)
 (h) \(\ln(9 + e^x) + C \)
 (i) \(4 \arctan(x) + C \)
 (j) \(6x^2 + C \)
 (k) \(18e^{\sqrt{x}} + C \)
 (l) \(\arctan(x + 3) + C \)
 (m) \(\frac{1}{\sqrt{3}} \arctan\left(\frac{x+3}{\sqrt{3}}\right) + C \)

2. (a) \(x^3 - 10x^2 - 5x + C \)
 (b) \(\frac{1}{4} e^{3x} - \frac{5}{4} e^{2x} + 4e^x + C \)
 (c) \(\frac{5}{8} x^3 + \frac{3}{2} x^2 - 4x + C \)
 (d) \(-\frac{1}{2} + x - 2 \ln|x| + C \)
 (e) \(x + \ln|\sin(x)| + C \)
 (f) \(\ln|x^2 + 1| + \arctan(x) + C \)
 (g) \(\frac{9}{6} x^6 - \frac{5}{2} x^5 + 3x^4 - \frac{8}{3} x^3 + C \)
 (h) \(\frac{1}{2} \ln|x^2 + 4x + 7| - \frac{2}{\sqrt{3}} \arctan\left(\frac{x+2}{\sqrt{3}}\right) + C \)
 (i) \(\frac{3}{8} - 3x + 4 \ln|x| + C \)
3.

(a) \(x \ln x - x + C \)

(b) \(-x \cos(x) + \sin(x) + C \)

(c) \((x - 1) \ln (1 - x) - x + C \)

(d) \(\frac{2}{3} (x + 1)^{\frac{3}{2}} - \frac{4}{15} (x + 1)^{\frac{5}{2}} + C \)

(e) \(\frac{1}{2} \ln^2(x) + C \)

4.

(a) \(\frac{2}{3} \sqrt[3]{x^3} + 2 \sqrt{x} + C \)

(b) \(\ln^2(\frac{x}{2}) + C \)

(c) \(\frac{6}{7} (\sqrt[3]{x + 1})^7 - 6 (\sqrt[3]{x + 1})^5 + 50 (\sqrt[3]{x + 1})^3 - 750 \sqrt[3]{x + 1} + \frac{3750}{\sqrt[3]{x}} \arctan \left(\frac{\sqrt[3]{x + 1}}{\sqrt[3]{x}} \right) + C \)

(d) \(\frac{4}{3} \left(\sqrt[3]{x^3} - \ln \left| \sqrt[3]{x^3} + 1 \right| \right) + C \)

(e) \(2e\sqrt{x} (\sqrt{x} - 1) + C \)

(f) \(-3\sqrt{x^2} \cos(\sqrt{x}) + 6 \sqrt{x} \sin(\sqrt{x}) + 6 \cos(\sqrt{x}) + C \)

5.

(a) \(x - 5 \ln |x + 1| - \frac{5}{x+1} + C \)

(b) \(\frac{x^2}{2} - \frac{1}{2} \ln (x^2 + 1) + C \)

(c) \(\frac{x^3}{3} - \frac{x^2}{2} + x - \ln |x + 1| + C \)

(d) \(\ln \left| \frac{(x-2)^3}{x+1} \right| + C \)

(e) \(\ln \left(\frac{(x-3)^{12}}{(x-2)^{10}} \right) + C \)
1.4 Ficha de auto-avaliação nº1:

1. Resolva as seguintes primitivas:

(a) \(\int e^{x} + e^{x} \)

(b) \(\int \frac{x + \ln x}{x} \)

(c) \(\int \sqrt{x} \sqrt{x} \sqrt{x} \)

(d) \(\int \frac{M}{r^{2}} dr \)

(e) \(\int \frac{5x^{4} \sin(x^{3})}{\cos(x^{3}) + 1} \)

(f) \(\int e^{x} (e^{x} + x) \)

(g) \(\int (x^{2} - x) \ln(x + 1)^{-1} \)

(h) \(\int \frac{x^{2} + 1}{x^{2} - 3x + 2} \)

(i) \(\int \frac{2x}{x + \sqrt{x}} \)

(j) \(\int \frac{x^{2}}{\sqrt{16 - x^{2}}} \)

(k) \(\int \arccos x \)

2. O Sr. Esquecido é o administrador de uma fábrica de queijos perto de Nisa. Ele sabe que o custo marginal de produzir \(x \) queijos é dado por

\[C'(x) = 10x + 8 \]

e que os custos fixos ascendem a 40. Ajuide o Sr. Esquecido a calcular a função dos custos totais \(C(x) \).
1.5 Ficha de auto-avaliação nº2:

1. Resolva as seguintes primitivas:

(a) \[\int \frac{(e^x+1)^2}{e^x} \]
(b) \[\int \frac{1}{x\sqrt{2x-3}} \]
(c) \[\int (a + bg + cg^2 + dg^3) \, dg \quad \text{(Nota: não assuste com } dg, \, \text{pois serve apenas para indicar a ordem a que variável devemos primitivar a função)} \]
(d) \[\int \frac{4x^2+x+1}{x^3-x} \]
(e) \[\int x^{-1} \ln (\ln(x)) \]
(f) \[\int \frac{e^x}{(e^x)^2+9} \]
(g) \[\int x^n \ln x \]
(h) \[\int \frac{x}{\sqrt{1+x^2}} \]
(i) \[\int e^{4\sin x} \cos x \]
(j) \[\int \frac{x^3+1}{x^3+x^2-2x} \]

2. Determine a função \(g \) tal que:

(a) \[g :]0;+\infty[\longrightarrow \mathbb{R} \text{ e satisfaz as condições: } \forall x>0 \quad g''(x) = \frac{1}{x^2} + x^3 + 2 , \quad g(1) = 0 \text{ e } g'(1) = \frac{1}{4}. \]
(b) \[g :]-2;+\infty[\longrightarrow \mathbb{R} \text{ e satisfaz as condições: } \forall x>-2 \quad g''(x) = \frac{1}{x^2} , \quad g(-1) = 3 \text{ e } g'(-1) = 2. \]
2 Integração

2.1 Exercícios resolvidos

1. Calcule o valor dos seguintes integrais definidos:

(a) $\int_{0}^{1} (x^2 + x) \, dx$

Resolução:

Observe-se o gráfico da função $f(x) = x^2 + x$.

O integral da função entre $[0, 1]$, assinalado na figura, é dado por: $\int_{0}^{1} (x^2 + x) = \left[\frac{x^3}{3} + \frac{x^2}{2} \right]_0^1 = \frac{1}{3} + \frac{1}{2} = \frac{5}{6}$

(b) $\int_{-1}^{3} (e^{x-6} + 1) \, dx$

Resolução:

Neste caso pretende-se determinar a área entre a função $f(x) = e^{(x-6)} + 1$, o eixo dos XX, $x = -1$ e $x = 3$.
A área é dada por: \[\int_{-1}^{3} (e^{(x-6)} + 1) \, dx = \left[e^{(x-6)} + x \right]_{-1}^{3} = e^{(3-6)} + 3 - (e^{-1-6} - 1) = e^{-3} - e^{-7} + 4 \]

(c) \(\int_{\frac{\pi}{2}}^{\pi} \sin x \, dx \)

Resolução:

![Diagrama de área de uma função seno](image)

Seguindo a lógica dos exemplos anteriores \(\int_{\frac{\pi}{2}}^{\pi} \sin x \, dx = [-\cos x]_{\frac{\pi}{2}}^{\pi} = -\cos \pi + \cos \frac{\pi}{2} = 1; \) neste caso, o integral corresponde à área abaixo da função \(f(x) = \sin x \) no intervalo \(\left[\frac{\pi}{2}; \pi \right] \); que é igual a 1.

(d) \(\int_{\frac{\pi}{2}}^{\frac{4\pi}{3}} \sin x \, dx \)

Resolução: Utilizando a ideia da alínea anterior parece que \(\int_{\frac{\pi}{2}}^{\frac{4\pi}{3}} \sin x \, dx = \int_{\frac{\pi}{2}}^{\pi} \sin x \, dx + \int_{\pi}^{\frac{4\pi}{3}} \sin x \, dx = 1 + \int_{\frac{\pi}{2}}^{\pi} \sin x \, dx = 1 + [-\cos x]_{\frac{\pi}{2}}^{\pi} = \frac{1}{2} \)

Cuidado! Alerta! Observe bem este exemplo enganador. Não será estranho que agora a área seja menor do que a anterior sendo o intervalo maior? Note bem que nem sempre um integral corresponde a uma área e é precisamente o que acontece neste caso. Surpreendido?

Como no intervalo \(\left[\pi; \frac{4\pi}{3} \right] \) a função tem sinal negativo, para calcularmos a área teríamos de fazer: \(\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \sin x \, dx + \int_{\frac{\pi}{2}}^{\frac{4\pi}{3}} - \sin x \, dx \)

Se está esquecido, lembre o que estudou nas aulas teóricas! Se quisermos calcular a área de uma função que está abaixo do eixo dos \(XX \) num certo intervalo \([a, b] \) devemos fazer \(\int_{a}^{b} f(x) \, dx \).

(e) \(\int_{1}^{4} \sqrt{1 - x^2} \, dx \)

Resolução:

Por substituição, \(x = \sin(t) \Leftrightarrow t = \arcsin(x) \) e \(x' = \cos(t) \). ATENÇÃO: quando se substitui, altera-se também o intervalo de integração.
\[
\int_{-1}^{1} \sqrt{1-x^2} \, dx \rightarrow \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \sqrt{1-\sin^2(t)} \cos(t) \, dt = \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \sqrt{\cos^2(t)} \cos(t) \, dt = \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \cos^2(t) \, dt = \left[\frac{\sin(t) \cos(t) + t}{2} \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} - \frac{\pi}{2}
\]

\[
\frac{\sin(t) \cos(t) + t}{2} \rightarrow \left[x\sqrt{1-x^2} + \arcsin(x) \right]_{-1}^{1} = \sqrt{1+1} + \arcsin(1) - \sqrt{1+1} + \arcsin(-1) =
\]

\[
\frac{\arcsin(1)}{2} - \frac{\arcsin(-1)}{2} = \frac{\pi}{2} - \frac{-\pi}{2} = \pi
\]

(f) \[\int_{0}^{1} \frac{1+x}{1+\sqrt{x}} \, dx\]

Resolução:
Por substituição, \(x = t^2 \Rightarrow t = \sqrt{x} \) e \(x' = 2t \)
\[
\int_{0}^{1} \frac{1+x}{1+\sqrt{x}} \, dx \rightarrow \int_{0}^{1} \frac{1+t^2}{1+t} \, 2tdt = 2 \int_{0}^{1} \frac{1+t}{1+t} \, dt
\]

Procedendo à divisão inteira dos polinómios de forma a termos uma fração racional própria:
\[
2 \int_{0}^{1} \frac{1+t^2}{1+t} \, dt = 2 \int_{0}^{1} t^2 - t + 2 - \frac{2}{1+t} \, dt = 2 \left[\frac{t^3}{3} - \frac{t^2}{2} + 2t - 2 \ln|t+1| \right]_{0}^{1} =
\]

\[
= 2 \left[\frac{1}{3} - \frac{1}{2} + 2 - 2 \ln(2) - (-2 \ln(1)) \right] = \frac{11}{6} - 4 \ln(2)
\]

(g) \[\int_{1}^{2} \frac{t^2 \ln(t) - \ln(t)}{t+1} \, dt\]

Resolução:
\[
t^2 \ln(t) - \ln(t) = \frac{(t^2-1) \ln(t)}{t+1} = (t-1) \ln(t)
\]
\[
\int_{1}^{2} \frac{t^2 \ln(t) - \ln(t)}{t+1} \, dt = \int_{1}^{2} (t-1) \ln(t) \quad \text{Teremos que integrar por partes!}
\]

Se \(u = t-1 \) e \(v = \ln(t) \), então \(u' = \frac{t}{2} - t \) e \(v' = \frac{1}{t} \):
\[
\int_{1}^{2} (t-1) \ln(t) = \left[\left(\frac{t^2}{2} - t \right) \ln(t) \right]_{1}^{2} - \int_{1}^{2} \left(\frac{t^2}{2} - t \right) \, dt = \left[\left(\frac{t^2}{2} - t \right) \ln(t) \right]_{1}^{2} - \left[\frac{t^2}{4} - t \right]_{1}^{2} = \frac{1}{4}
\]

2. Calcule a área delimitada pelas curvas:

(a) \(y = -x^2 \), \(y = -4 \)

Resolução:
Em primeiro lugar, temos de encontrar o ponto de intersecção das duas funções. Não é difícil perceber que será em \(x = -2 \) e em \(x = 2 \).

Assim, a área será:

\[\int_{-2}^{2} (-x^2 - (-4)) \, dx = - \int_{-2}^{2} (x^2 - 4) \, dx = - \left[\frac{x^3}{3} - 4x \right]_{-2}^{2} = - \left[\frac{8}{3} - 8 - \left(\frac{-8}{3} + 8 \right) \right] = - \frac{16}{3} + 16 = \frac{32}{3} \]

Note que esta área tem de ser forçosamente igual à área delimitada pelas funções \(y = x^2 \), \(y = 4 \).

Verifique que \(\int_{-2}^{2} (4 - x^2) \, dx = \frac{32}{3} \).

(b) \(y = 3(x^3 - x) \), \(y = 0 \)

Resolução:

Observando o gráfico percebemos que a área pretendida resulta da soma de duas áreas distintas. A primeira vai de \([-1, 0]\) e a segunda de \([0, 1]\).

![Gráfico](image)

A primeira região é definida por \(\int_{-1}^{0} 3(x^3 - x) \, dx \)

Quanto à segunda região, temos de ter em atenção o facto da função se encontrar abaixo do eixo dos XX, logo a área será dada por: \(\int_{0}^{1} -3(x^3 - x) \, dx \)

Assim, a área total é dada por

\[\int_{-1}^{0} 3(x^3 - x) \, dx + \int_{0}^{1} -3(x^3 - x) \, dx = 3 \int_{-1}^{0} (x^3 - x) \, dx - 3 \int_{0}^{1} (x^3 - x) \, dx = \frac{3}{4} + \frac{3}{4} = \frac{3}{2} \]

Perceba bem que se tivesse calculado \(\int_{-1}^{1} 3(x^3 - x) \, dx \) iria obter uma área total igual a 0, o que não faz sentido nenhum! Uma das áreas estaria a anular a outra! Também pode verificar facilmente que a função é ímpar e assim a área é \(2 \int_{0}^{1} -f(x) \, dx \).

(c) \(y = 2x \), \(y(x^2 + 1) = x \), \(xy = 1 \) e \(x = 1 \).

Resolução:

O primeiro passo é perceber bem quais são as funções que temos em mãos e ver graficamente qual a área delimitada.
Escravendo de outro modo as funções apresentadas:

\[y = 2x, \quad y = \frac{x}{x^2 + 1}, \quad y = \frac{1}{x} \quad \text{e} \quad x = 1. \]

Graficamente temos:

![Gráfico da função](image)

Para determinar o ponto de interseção das funções \(y = 2x \) e \(y = \frac{1}{x} \), temos que resolver a seguinte equação \(\frac{1}{x} = 2x \iff x = \pm \sqrt[3]{2} \)

Assim, a área pretendida será dada pelo seguinte integral definido:

\[
\int_0^{\sqrt[3]{2}} (2x - \frac{x}{x^2 + 1}) dx + \int_1^{\frac{1}{\sqrt[3]{2}}} (\frac{1}{x} - \frac{x}{x^2 + 1}) dx = 2 \left[\frac{x^2}{2} \right]_0^{\sqrt[3]{2}} - \frac{1}{2} \left[\ln |x^2 + 1| \right]_0^{\frac{3}{2}} + \left[\ln |x| \right]_{\frac{3}{2}}^{\sqrt[3]{2}} - \frac{1}{2} \left[\ln |x^2 + 1| \right]_0^{\frac{3}{2}} =
\]

\[
= 2 \left[\frac{x^2}{2} \right]_0^{\sqrt[3]{2}} + \left[\ln |x| \right]_{\frac{3}{2}}^{\sqrt[3]{2}} - \frac{1}{2} \left[\ln |x^2 + 1| \right]_0^{\frac{3}{2}} = 0.5
\]

3. Calcule o seguinte integral que depende de um parâmetro. Note que o valor final dependerá, naturalmente, desse parâmetro.

(a) \(\int_0^1 \beta y^2 dy \)

Resolução:

\[
\int_0^1 \beta y^2 dy = \left[\frac{\beta y^3}{3} \right]_0^1 = \frac{\beta}{3}
\]

(b) \(\int_2^3 x^\alpha dx \)

Resolução:

\[
\int_2^3 x^\alpha dx = \left[\frac{x^{\alpha+1}}{\alpha+1} \right]_2^3 = \left[\frac{2^{\alpha+1}}{\alpha+1} \right] - \left[\frac{3^{\alpha+1}}{\alpha+1} \right] = \frac{3^{\alpha+1} - 2^{\alpha+1}}{\alpha+1}
\]

(c) \(\int_1^2 x^{2\alpha} \ln(x) dx \)

Resolução:

Por partes, sendo \(u' = x^{2\alpha} \) e \(v = \ln(x) \), temos que \(u = \frac{x^{2\alpha+1}}{2\alpha+1} \) e \(v' = \frac{1}{x} \).

Assim:
\[
\int_1^2 x^{2\alpha} \ln(x) dx = \left[\frac{2^{\alpha+1}}{2\alpha+1} \ln(x) \right]_1^2 - \int_1^2 \frac{2^{\alpha+1}}{2\alpha+1} \frac{1}{x} dx = \frac{2^{\alpha+1}}{2\alpha+1} \ln(2) - \frac{1}{2\alpha+1} \int_1^2 x^{2\alpha} dx =
\]
\[
= \frac{2^{\alpha+1}}{2\alpha+1} \ln(2) - \frac{1}{2\alpha+1} \left[\frac{2^{\alpha+1}}{2\alpha+1} \ln(2) - \frac{1}{2\alpha+1} \right] = \frac{2^{\alpha+1}}{2\alpha+1} \ln(2) - \frac{1}{2\alpha+1} \left[\frac{2^{\alpha+1} - 1}{(2\alpha+1)^2} \right] =
\]

4. Calcule os seguintes integrais em que um dos limites é infinito e diga se são convergentes ou divergentes:

(a) \(\int_0^{+\infty} \frac{1}{1+x^2} dx \)

Resolução:
\[
\int_0^{+\infty} \frac{1}{1+x^2} dx = \lim_{b \to +\infty} \int_0^b \frac{1}{1+x^2} dx = \lim_{b \to +\infty} \left[\arctan(x) \right]_0^b = \lim_{b \to +\infty} \left[\arctan(b) - \arctan(0) \right] = \frac{\pi}{2} - 0 = \frac{\pi}{2} \]
O limite existe, logo o integral é convergente!

(b) \(\int_\frac{\pi}{2}^{+\infty} \sin(x) dx \)

Resolução:
\[
\int_\frac{\pi}{2}^{+\infty} \sin(x) dx = \lim_{b \to +\infty} \int_\frac{\pi}{2}^b \sin(x) dx \quad \text{Este limite não existe, logo o integral é divergente.}
\]

5. Calcule os seguintes integrais impróprios e diga se são convergentes ou divergentes:

(a) \(\int_0^{+\infty} \frac{2}{\sqrt{x}} dx \)

Resolução:
Temos de ter atenção ao ponto \(x = 0 \) porque a função não está definida neste ponto!
\[
\int_0^{+\infty} \frac{2}{\sqrt{x}} dx = \lim_{\varepsilon \to 0} \int_0^{1+\varepsilon} \frac{2}{\sqrt{x}} dx = \lim_{\varepsilon \to 0} 2 \int_0^{1} \frac{1}{\sqrt{x}} dx = 2 \lim_{\varepsilon \to 0} \left[2x^{\frac{1}{2}} \right]_0^1 =
\]
\[
= 2[2-0] = 4 \quad \text{convergente}
\]

(b) \(\int_{-\infty}^0 \frac{1}{x^2} dx \)

Resolução:
Atenção ao ponto \(x = 0 \!\)!
\[
\int_{-\infty}^0 \frac{1}{x^2} dx = \lim_{\varepsilon \to 0} \int_{-\infty}^{-\varepsilon} \frac{1}{x^2} dx + \lim_{\varepsilon \to 0} \int_{-\varepsilon}^0 \frac{1}{x^2} dx = \lim_{\varepsilon \to 0} \left[-\frac{1}{x} \right]^{-\varepsilon} - \lim_{\varepsilon \to 0} \left[-x^{-1} \right]_\varepsilon^0 = +\infty + \infty \rightarrow \text{é divergente!}
\]

Dica:
Sabemos que \(\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx \), mas muita atenção! Se ambos os integrais do lado direito não convergem, então o integral do lado esquerdo nem sequer está definido! Perceba que a resposta correta a esta questão não é \(+\infty ! \)
6. Calcule as derivadas em ordem a x das funções seguintes:

(a) $\int_1^x \sin(t^2)dt$

Resolução:
Calcular a derivada da primitiva é andar um passo para a frente e um passo para trás.

Em termos líquidos, ficamos no mesmo lugar, excepto quanto à variável! Temos de ter apenas atenção aos limites de integração. Nem é preciso calcular a primitiva!!!

Em geral, $\frac{d}{dx} \int_a^x f(t)dt = f'(x) = f(x)$ sendo $F(x)$ uma primitiva (que não calculamos!) de $f(x)$.

No nosso exercício: $\frac{d}{dx} \left[\int_1^x \sin(t^2)dt \right] = \sin(x^2)$

A derivada de um integral indefinido em ordem ao limite superior de integração é igual à função integranda avaliada nesse limite. Por quê? Porque ao integrarmos em t, t desaparece e necessariamente a derivada é em x!

(b) $\int_x^{2\pi} \cos(t^2)dt$

Resolução:

$\frac{d}{dx} \int_x^{2\pi} f(t)dt = -F'(x) = -f(x)$ sendo $F(x)$ uma primitiva de $f(x)$.

No nosso exercício: $\frac{d}{dx} \left[\int_x^{2\pi} \cos(t^2)dt \right] = -\cos(x^2)$

A derivada de um integral indefinido em ordem ao limite inferior de integração é igual ao simétrico da função integranda avaliada nesse limite.

(c) $\int_x^{2\pi} e^{t^2} dt$

Resolução:

Utilizando a fórmula de Barrow, $\frac{d}{dx} \int_{g(x)}^{h(x)} f(t)dt = \frac{d}{dx} \left[F(t) \right]_{g(x)}^{h(x)} = \frac{d}{dx} \left[F(g(x)) - F(h(x)) \right] = f[g(x)] g'(x) - f[h(x)] h'(x)$.

Parece termos chegados a um resultado importante: $\frac{d}{dx} \int_{g(x)}^{h(x)} f(t)dt = f[g(x)] g'(x) - f[h(x)] h'(x)$, sendo $g(x)$ uma primitiva de $g(x)$ e $f(x)$ uma primitiva de $f(x)$.

Aplicando a ideia ao nosso exercício: $\frac{d}{dx} \left[\int_x^{2\pi} e^{t^2} dt \right] = 2e^{x^2} - e^{x^2}$

Isto não é para decorar!

7. Seja F a função definida em $[0, +\infty]$ tal que $F(x) = \int_0^x \ln(2 + t)dt$.

Diga, justificando, se são verdadeiras ou falsas as seguintes afirmações:

(a) i. $F(0) = \ln(2)$;
ii. $F(0) = \frac{1}{x^2}$, para todo o $x > 0$;
iii. F é crescente em $[0, +\infty[$.

Resolução:

i. $F(0) = \int_0^0 \ln(2 + t)dt = [(2 + t) \ln(2 + t) - 2 - t]_0^0 = 2 \ln(2) - 2 - 2 \ln(2) + 2 = 0 \iff F(0) = 0 \implies \text{AFIRMAÇÃO FALSA}$

ii. $\int_0^x \ln(2 + t)dt = [(2 + t) \ln(2 + t) - t - 2]_0^x = (2 + x) \ln(2 + x) - x - (2 - 0) \ln(2 + 0) + 0 = (2 + x) \ln(2 + x) - 2 \ln(2) - x$

$F(x) = [(2 + x) \ln(2 + x) - 2 \ln(2) - x]' = [2 \ln(2 + x) + x \ln(2 + x) - 2 \ln(2) - x]' = 2 \frac{1}{x+2} + \ln(2 + x) + \frac{x}{x+2} - 1 = \frac{x+2}{x+2} + \ln(2 + x) - 1 = \ln(2 + x)$

$F(x) = \ln(2 + x) \neq \frac{1}{x+2} \implies \text{AFIRMAÇÃO FALSA}$

Uma forma mais direta para responder à questão seria invocar o teorema que diz:

$$\frac{d}{dx} \left[\int_a^x f(t)dt \right] = f(x)$$

Ou seja, $\frac{d}{dx} \left[\int_a^x \ln(2 + t)dt \right] = \ln(2 + x)$

iii. $F(x)$ é tal que: $F(x) = \ln(2 + x) > 0$ em $[-1, +\infty[$. Como $x \in [0, +\infty[, \ln(2 + x) > 0$, logo é verdade que F seja crescente \implies AFIRMAÇÃO VERDADEIRA

8. Integrais duplos (!!!!!!)

Só um cheirinho! Como o nome indica, podemos calcular dois integrais simultaneamente contemplando duas variáveis de integração. Assim, tal como o integral simples corresponde, em princípio, ao cálculo de uma área, o integral duplo corresponde ao cálculo de um volume.

Um integral duplo terá o seguinte aspecto:

$$\int_c^d \int_a^b f(x, y) dx dy$$

Podemos calcular o integral duplo pelo cálculo sucessivo de dois integrais simples, integrando primeiro em ordem a x (mantendo y constante) e integrando depois o resultado (que é uma função de y) em ordem a y.

(a) $\int_0^1 \int_0^y (x^2 + y^2) dy dx = \int_0^1 \left[x^2 y + \frac{y^3}{3} \right]_0^y dx = \int_0^1 \left[x^2 + \frac{y^3}{3} \right] dx = \left[\frac{x^3}{3} + \frac{y^3}{9} \right]_0^1 = \frac{1}{3} + \frac{1}{9}$
2.2 Exercícios propostos

1. Calcule os seguintes integrais definidos:

(a) \(\int_{0}^{2} (x^2 + 5x - 1) \, dx \)
(b) \(\int_{1}^{2} (5x^3 + 3x^2 + 4) \, dx \)
(c) \(\int_{1}^{e+1} \frac{2}{3x} \, dx \)
(d) \(\int_{-2}^{3} \frac{3}{y} \, dy \)
(e) \(\int_{5}^{8} (2x - 3e^x) \, dx \)
(f) \(\int_{0}^{1} \frac{1}{2x + 4x^{1/2}} \, dx \)
(g) \(\int_{a}^{b} \sin(x) \, dx \)
(h) \(\int_{1}^{4} 2e^{\sqrt{x}} \, dx \)
(i) \(\int_{0}^{5} \ln(x) \, dx \)
(j) \(\int_{0}^{\pi} x \sin(x) \, dx \)
(k) \(\int_{0}^{\pi} e^x \cos(x) \, dx \)
(l) \(\int_{-3}^{1} 2\eta^2 \, d\eta \)
(m) \(\int_{1}^{10} \ln(5x - 1) \, dx \)
(n) \(\int_{4}^{5} \sqrt{2 + x} \, dx \)
(o) \(\int_{0}^{1} \frac{3x}{x^2 + 5} \, dx \)
(p) \(\int_{a}^{b} (\sin(x) - \cos(x)) \, dx \)
(q) \(\int_{0}^{1} \frac{x^3 + x + \sqrt{x + 1}}{x + 1} \, dx \)

2. Calcule a área delimitada por:

(a) \(2x^2 \leq y \leq 2x \)
(b) \(\cos(x) \leq y \leq \sin(x), \ 0 \leq x \leq \pi \)
(c) \(y^2 = 9x, \ x = 2 \)
(d) \(-e^{-x} \leq y, \ y \leq e^{-x}, \ x \geq 0 \)
(e) \(y \leq \frac{1}{x}, \ x \geq 0 \)
(f) \(2y = 16 - x^2, \ x + 2y + 4 = 0 \)
(g) \(x = y^3, \ x + y = 2, \ y = 0 \)
(h) \(y = \sqrt{2}(x + 1), \ y^2 = x, \ y^2 + x^2 = 2 \)
(i) \((x - 3)^2 + (y - 2) = 1, \ y = x - 2, \ y = 0, \ x = 5 \)
3. Calcule os seguintes integrais paramétricos:

(a) \(\int_2^3 \left(\frac{2}{3t^2} + t \right) \, dx \)
(b) \(\int_0^1 \alpha e^{\beta t} \, dt \)
(c) \(\int_1^4 \frac{3x}{y} \, dx \)

4. Calcule os seguintes integrais de limite infinito e diga se são convergentes ou divergentes:

(a) \(\int_{-\infty}^0 e^x \, dx \)
(b) \(\int_0^{+\infty} 5x \sin(x) \, dx \)
(c) \(\int_1^{+\infty} \frac{8}{x} \, dx \)
(d) \(\int_1^{+\infty} \frac{1}{2x^3} \, dx \)
(e) \(\int_2^{+\infty} 3e^{-\sqrt{x}} \, dx \)
(f) \(\int_0^{+\infty} \sin(x) \, dx \)
(g) \(\int_1^{+\infty} (1 - x)e^{-x} \, dx \)
(h) \(\int_{-\infty}^0 xe^{-2x} \, dx \)

5. Calcule os seguintes integrais impróprios e diga se são convergentes ou divergentes:

(a) \(\int_1^2 \frac{x-1}{\sqrt{x-1}} \, dx \)
(b) \(\int_{-1/2}^{1/2} \frac{5}{\sqrt{1-x^2}} \, dx \)
(c) \(\int_1^2 \frac{x}{\sqrt{x-1}} \, dx \)
(d) \(\int_0^1 \frac{1}{\sqrt{x}} \, dx \)
(e) \(\int_0^2 \frac{1}{\sqrt{y}} \, dy \)
(f) \(\int_{-1}^{-1/2} \frac{1}{\sqrt{x}} \, dx \)

6. Calcule os seguintes integrais duplos (atenção à ordem das variáveis):

(a) \(\int_{-1}^1 \int_{-2}^2 (x^2 + y^2) \, dy \, dx \)
(b) \(\int_0^1 \int_0^1 (xy) \, dxdy \)
2.3 Soluções:

1.

(a) \(\frac{32}{3} \)
(b) \(\frac{119}{4} \)
(c) \(\frac{3}{2} \ln |e + 1| \)
(d) \(-3 \ln(2) \)
(e) \(-3e^8 + 3e^5 + 39 \)
(f) \(\arctan(3) - \arctan(2) \)
(g) \(\frac{\sqrt{7}}{2} - \frac{\sqrt{2}}{2} \)
(h) \(4e^2 \)
(i) \(5 \ln(5) - 3 - 2 \ln(2) \)
(j) \(1 \)
(k) \(\frac{1}{2}e^{\frac{1}{2} \pi} - \frac{1}{2} \)
(l) \(\frac{5\pi}{4} \)
(m) \(\frac{98}{5} \ln(7) - 9 - \frac{8}{5} \ln(2) \)
(n) \(\frac{14}{5} \sqrt{7} - 4 \sqrt{6} \)
(o) \(\frac{1}{20} \)
(p) \(2 \)
(q) \(-\frac{3}{2} + 2\sqrt{2} \)

2.

(a) \(\text{Área} = \frac{1}{3} \)
(b) \(\text{Área} = 1 + \sqrt{2} \)
(c) \(\text{Área} = 8\sqrt{2} \)
(d) \(\text{Área} = 2 \)
(e) \(\text{Área} = +\infty \)
(f) \(\text{Área} = 60, 75 \)
(g) \(\text{Área} = \frac{5}{4} \)
(h) \(\text{Área} = \frac{\pi}{2} + \frac{6\sqrt{2} - 3}{9} - \arcsin \left(-2 \frac{\sqrt{2}}{3} \right) \)
(i) \(\text{Área} = -2\sqrt{3} + \frac{31}{6} \)
3.
(a) \(\frac{2 + 3x^2 - t}{3x - 1} \)
(b) \(\alpha \frac{e^x - 1}{\beta} \)
(c) \(\frac{45}{29} \)

4.
(a) 1 (convergente)
(b) Não existe, logo é divergente
(c) +\(\infty \) (divergente)
(d) \(\frac{1}{10} \) (convergente)
(e) \(6e^{-\sqrt{2}} (\sqrt{2} + 1) \) (convergente)
(f) Não existe, logo é divergente
(g) \(-e^{-1} \) (convergente)
(h) \(-\infty \) (divergente)

5.
(a) \(\frac{2}{3} \rightarrow convergente \)
(b) \(\frac{5\pi}{3} \rightarrow convergente \)
(c) \(\frac{8}{3} \rightarrow convergente \)
(d) \(\frac{3}{2} \rightarrow convergente \)
(e) \(+\infty \rightarrow divergente \)
(f) \(\frac{3}{8} \rightarrow convergente \)

6.
(a) 18
(b) \(\frac{1}{4} \)
2.4 Aplicação a problemas da área de Estatística, Economia e Gestão

1. Considere a variável aleatória X que tem a seguinte função de densidade $f(x) = \frac{3}{16}(4x - x^2)$, $x \in [0, 2]$.

(a) Represente gráficamente a função.

Resolução:

(b) Verifique que se trata de uma função densidade de probabilidade.

Resolução:

Trata-se de um conceito que estamos desde já a antecipar da cadeira de Estatística para Economia e Gestão!

Para que uma dada função possa ser considerada função densidade de probabilidade tem que verificar as seguintes duas condições:

- $f(x) \geq 0$
- $\int_{x \in D} f(x)dx = 1$, ou seja a área por debaixo do gráfico entre 0 e 2 tem de igualar 1.

Ao trabalho!

A verificação da primeira condição parece ser clara a partir da observação gráfica, uma vez que todos os valores da função são não negativos no intervalo em estudo.

Quanto à segunda condição, não é nada que não consigamos fazer com os conhecimento de Cálculo II! Aqui vai...

$\int_{0}^{2} \frac{3}{16}(4x - x^2)dx = \frac{3}{16}\left[2x^2 - \frac{x^3}{3}\right]_{0}^{2} = \frac{3}{16}\left[8 - \frac{8}{3}\right] = 1$

Já está! Acabámos de provar que se trata realmente de uma função densidade de probabilidade.

(c) Calcule a função de distribuição $F(x)$.

Dica: $F(x) = P(X \leq x) = \int_{-\infty}^{x} f(x)dx$

Resolução:

$F(x) = \int_{-\infty}^{x} \frac{3}{16}(4x - x^2)dx = \frac{3}{16}\int_{0}^{x} (4x - x^2)dx = \frac{3}{16}\int_{0}^{x} (4x - x^2)dx = \frac{3}{16}\left[2x^2 - \frac{x^3}{3}\right]_{0}^{x} = \frac{3}{8}x^2 - \frac{1}{16}x^3$
Na verdade, o que nos dará esta função? Vamos por passos...

Calculando:

\[F(0) = P(X \leq 0) = \int_0^0 \frac{3}{16}(4x - x^2)dx = \left(\frac{3}{8}x^2 - \frac{1}{16}x^3 \right)_{x=0} = 0 \]

\[F\left(\frac{1}{2}\right) = P(X \leq \frac{1}{2}) = \int_0^{\frac{1}{2}} \frac{3}{16}(4x - x^2)dx = \left(\frac{3}{8}x^2 - \frac{1}{16}x^3 \right)_{x=\frac{1}{2}} = \frac{11}{128} \]

\[F(1) = P(X \leq 1) = \int_0^1 \frac{3}{16}(4x - x^2)dx = \left(\frac{3}{8}x^2 - \frac{1}{16}x^3 \right)_{x=1} = \frac{5}{16} \]

\[F\left(\frac{3}{2}\right) = P(X \leq \frac{3}{2}) = \int_0^{\frac{3}{2}} \frac{3}{16}(4x - x^2)dx = \left(\frac{3}{8}x^2 - \frac{1}{16}x^3 \right)_{x=\frac{3}{2}} = \frac{81}{128} \]

\[F(2) = P(X \leq 2) = \int_0^2 \frac{3}{16}(4x - x^2)dx = \left(\frac{3}{8}x^2 - \frac{1}{16}x^3 \right)_{x=2} = 1 \]

Agora é mais fácil perceber!

\(F(x) \) é uma função que nos traduz a área entre o gráfico \(f(x) \) e o eixo dos \(XX \) no intervalo \([0, x]\). Por outras palavras, é a probabilidade da variável aleatória \(X \) tomar valores entre 0 e \(x \).

Quanto mais próximo de 2 for \(x \), maior valor terá a área, logo maior será a probabilidade.

\[(d) \text{ Com base em } F(x) \text{ calcule as seguintes probabilidades:}\]

i. \(P(X \leq \frac{4}{3}) \)

Resolução: \(P(X \leq \frac{4}{3}) = F\left(\frac{4}{3}\right) = \int_0^{\frac{4}{3}} \frac{3}{16}(4x - x^2)dx = \frac{26}{125} \)

ii. \(P(X > 1) \)

Resolução: \(P(X > 1) = 1 - P(X \leq 1) = 1 - F(1) = 1 - \int_0^1 \frac{3}{16}(4x - x^2)dx = \frac{11}{16} \) A probabilidade de \(x \) tomar valores superiores a 1 é o complementar da probabilidade de \(x \) tomar valores inferiores ou iguais a 1.

iii. \(P(X \leq 5) \)

Resolução: \(P(X \leq 5) = F(5) = \int_0^5 \frac{3}{16}(4x - x^2)dx = \int_0^2 \frac{3}{16}(4x - x^2)dx + \int_0^1 \frac{3}{16}(4x - x^2)dx = F(2) = 1 \) Se \(x \) só toma valores entre 0 e 2, é óbvio que a probabilidade de \(x \) tomar valores iguais ou inferiores a 5 é 100%.

iv. \(P(1 \leq X \leq \frac{3}{2}) \)

Resolução: \(P(1 \leq X \leq \frac{3}{2}) = \int_1^{\frac{3}{2}} \frac{3}{16}(4x - x^2)dx = \frac{41}{128} \)

Outra forma de responder à pergunta é pensar que a área entre 1 e \(\frac{3}{2} \) corresponde a área situada à esquerda de \(\frac{3}{2} \) subtraída da área à esquerda de 1. Assim, \(P(1 \leq X \leq \frac{3}{2}) = F\left(\frac{3}{2}\right) - F(1) = \int_0^{\frac{3}{2}} \frac{3}{16}(4x - x^2)dx - \int_0^1 \frac{3}{16}(4x - x^2)dx = \frac{41}{128} \)

\[(c) \text{ Determine o ponto } x_1 \text{ tal que } P(X > x_1) = 0,1.\]

Resolução:

Encontrar o ponto cuja área à direita é 0,1, equivale a encontrar o ponto cuja área à esquerda é 0,9, visto que a área total é invariavelmente igual a 1. Veja bem no gráfico!

Assim, \(P(X > x_1) = 0,1 \Leftrightarrow P(X \leq x_1) = 0,9 \Leftrightarrow F(x_1) = 0,9 \Leftrightarrow \int_0^{x_1} \frac{3}{16}(4x - x^2)dx = 0,9 \)
Aproveitando o resultado da alínea c) torna-se mais simples. Assim, \(\frac{3}{8}x^2 - \frac{1}{16}x^3 = 0, 9 \). Bastaria agora resolver esta equação e encontrariamos o valor de \(x_1 \). Não precisa de calcular visto que não é fácil baixar o grau do polinômio obtido. Fica a ideia, mas se for curioso, experimente resolver com o software Scientific Workplace!

2. O lucro de uma empresa como função da quantidade produzida \(x \) (em que \(x > 0 \)) é:

\[
f(x) = 3800 - x - \frac{2500000}{x}
\]

Sabendo que a quantidade produzida varia entre 1250 e 3500 unidades, calcule o lucro médio.

Resolução:

O lucro médio será dado por \(E(x) = \int g(f(x)) f(x) dx \), onde \(g(f(x)) \) é a função densidade de probabilidade do lucro. Suponho que a quantidade produzida se distribui uniformemente no intervalo [1250, 3500], então \(g(f(x)) = \frac{1}{(3500-1250)} \). Verifique que se trata realmente de uma função densidade!

Calculando o integral definido:

\[
\begin{align*}
\frac{1}{(3500-1250)} \int_{1250}^{3500} f(x) dx &= \frac{1}{2250} \int_{1250}^{3500} \left(3800 - x - \frac{2500000}{x}\right) dx \\
&= 1425 - \frac{10000}{9} \ln(2) + \frac{10000}{9} \ln(5) - \frac{10000}{9} \ln(7) = 1425 - \frac{10000}{9} [\ln(2) - \ln(5) + \ln(7)]
\end{align*}
\]

3. Em Estatística, a distribuição exponencial é definida por \(f(x) = \lambda e^{-\lambda x}, (x \geq 0, \lambda > 0) \). Mostre que a área entre a função \(f \) e o eixo dos \(xx \) no intervalo \([0, +\infty] \) é igual a 1.

Resolução:

Trata-se de um integral de limite infinito, nada que não consigamos resolver!

Graficamente, para \(\lambda = \frac{1}{2} \) por exemplo, temos:

![Gráfico da função exponencial](image)

A área pretendida é dada por \(\int_0^{+\infty} \lambda e^{-\lambda x} dx = \lim_{b \to +\infty} \int_0^b \lambda e^{-\lambda x} dx = \lim_{b \to +\infty} \left[-e^{-\lambda x}\right]_0^b = \lim_{b \to +\infty} (-e^{-\lambda b} + 1) = 1 \) Provado para qualquer \(\lambda > 0 \).

Note que a área é igual a 1 e \(f(x) > 0 \), logo trata-se de uma função densidade.
2.5 Ficha de auto-avaliação nº1

1. Resolva os seguintes integrais:

(a) \(\int_{2}^{5} (x^2 + 2x + 1)\,dx \)

(b) \(\int_{1}^{3} \frac{x+1}{x^2-1}\,dx \)

(c) \(\int_{0}^{+\infty} e^{-x}\,dx \)

(d) \(\int_{1}^{+\infty} \frac{1}{x^2}\,dx \)

(e) \(\int_{-3}^{x} \frac{4x}{x^2+9}\,dx \)

(f) \(\int_{0}^{3} \frac{z}{\sqrt{1+z}}\,dz \)

(g) \(\int_{0}^{4} \frac{1}{\sqrt{x+1}}\,dx \)

(h) \(\int_{0}^{1} \arcsin(x)\,dx \)

(i) \(\int_{-1}^{0} \frac{3}{y^2+9-2}\,dy \)

(j) \(\int_{\frac{\pi}{2}}^{\pi} \sin(x)\,dx \)

2. Integre \(\int_{2}^{3} x\sqrt{4-x}\,dx \) por dois métodos distintos:

(a) Por partes.

(b) Por substituição.

3. Calcule as áreas definidas por:

(a) \(x^2 \leq y \leq \frac{1}{x}, \ x \geq 0, \ y \leq 2 \)

(b) \(0 \leq y \leq x^2, \ 2 \leq x \leq 4 \)

(c) \(y \leq \frac{1}{x}, \ 0 \leq y \leq x, \ x \leq 4 \)

4. Esboce o gráfico de cada uma das seguintes funções e sombreie a região cuja área é representada pelos integrais:

(a) \(\int_{0}^{4} [(x+1) - \frac{\pi}{2}]\,dx \)

(b) \(\int_{-1}^{1} [(1 - x^2) (x^2 - 1)]\,dx \)

5. Mostre que \(\int_{1}^{+\infty} \frac{1}{x^a}\,dx = \frac{1}{a-1} \) se e só se \(a > 1 \) e que para \(a \leq 1 \) o integral é divergente.
6. A função \(f(x) = \frac{\ln x}{x^2} \) está definida para \(x > 0 \). Estude convergência de \(\int_{0}^{1} f(x) \, dx \) e \(\int_{1}^{+\infty} f(x) \, dx \) e comente os resultados encontrados.

7. Encontre o erro na resolução do seguinte integral e mostre que ele nem sequer é convergente.

\[
\int_{-1}^{1} \frac{1}{x^2} \, dx = \left[-\frac{1}{x} \right]_{-1}^{1} = -1 - 1 = -2
\]

Dica: se acha que está bem resolvido, pense um pouco e chegue à conclusão que não é possível obter um integral negativo sendo a função positiva em \(\mathbb{R} \). Onde estará então o erro?
2.6 Ficha de auto-avaliação n°2

1. Resolva os seguintes integrais:

(a) $\int_1^e \ln x \, dx$
(b) $\int_1^{+\infty} \frac{1}{\sqrt{x}} \, dx$
(c) $\int_0^4 \pi y \, dy$
(d) $\int_1^3 \frac{1}{\sqrt{x}} \, dx$
(e) $\int_{-2}^2 \frac{4}{x^2+9} \, dx$
(f) $\int_0^{+\infty} \frac{1}{x+1} \, dx$
(g) $\int_0^1 \frac{x+3}{\sqrt{4-x}} \, dx$
(h) $\int_{-3}^2 \frac{1}{\sqrt{1+x}} \, dx$
(i) $\int_0^\pi x^2 \sin x \, dx$
(j) $\int_0^1 \frac{1}{x^2-3x+6} \, dx$
(k) $\int_1^4 \cos(\ln x) \, dx$

2. Calcule a área da região delimitada por:

(a) $y = 2 - x^2$, $y = x$
(b) $y = -x^2 + 2$, $y = -x$, $x = 0$, $x = 1$
(c) $y^2 = 4x$, $y = 2x - 4$
(d) $y = 3x^3 - x^2 - 10x$, $y = -x^2 + 2x$
(e) $y = x^2 - 6x$, $y = 0$
(f) $y = (x - 1)^3$, $y = x - 1$
(g) $y = \sin x$, $y = \cos(2x)$, $-\frac{\pi}{2} \leq x \leq \frac{\pi}{6}$

3. Encontre pelo menos quatro funções contínuas f que satisfaçam simultaneamente as condições:

(i) $f(0) = 0$ e $f(1) = 0$
(ii) A área limitada por f e o eixo dos XX para $0 \leq x \leq 1$ é 1.
4. Prove que o seguinte integral converge e encontre o seu valor: \[\int_0^1 \frac{\ln x}{\sqrt{x}} \, dx. \]

5. A procura diária de farinha num supermercado, em centenas de quilos, é uma variável aleatória com função densidade de probabilidade:

\[
f(x) = \begin{cases}
\frac{2x}{3} & , \quad 0 \leq x < 1 \\
-\frac{x}{3} + 1 & , \quad 1 \leq x \leq 3 \\
0 & \quad \text{outros valores de } x
\end{cases}
\]

(a) Represente a graficamente a função.

(b) Qual a probabilidade da procura exceder 200kg num dia escolhido ao acaso?

(c) Qual a probabilidade de se situar entre 60kg e 150kg?

(d) Deduza a função de distribuição da procura diária de farinha.

6. Calcule \[\int_2^4 \frac{\sqrt{\ln(9-x)}}{\sqrt{\ln(9-x)+\ln(x+3)}} \, dx. \]

Nota: se conseguiu resolver este exercício considere-se gênio! Este problema foi formulado pelo Committee on the Prize Competition - The Mathematical Association of America.